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Interaction and Dynamics of Defects in 
Convective Roll Patterns of Anisotropic Fluids 

Eberhard Bodenschatz, ~'2 Andreas Weber,1 and Lorenz Kramer ~ 

We present an overview of the dynamics and interaction of defects in roll 
patterns of electroconvection in nematic liquid crystals (EHC). For the decay of 
an Eckhaus-unstable pattern we distinguish three regimes, depending on the 
width of the system perpendicular to the wavenumber mismatch. Motivated by 
recent experiments, we examine the annihilation process of defects in patterns 
with wavenumber near to band center, where the motion of the defects is 
dominated by the interaction. The comparison with the experiments shows that 
this process can be described even quantitatively within the framework of 
Ginzburg-Landau theory. 
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1. I N T R O D U C T I O N  

In two-d imens iona l ly  extended,  pa t t e rn - fo rming  systems topolog ica l  defects 
p lay  an i m p o r t a n t  roll  in the wavelength selection process  and in the 
t rans i t ion  to turbulence.  Therefore  a deta i led inves t igat ion of the proper t ies  
of defects is necessary for the under s t and ing  of these phenomena .  In  
i so t ropic  systems, like Rayleigh B6nard convect ion  in s imple fluids, the 
convect ive rolls appea r  at  threshold,  in general ,  r a n d o m l y  or iented  in the 
p lane  of the fluid layer,  if not  forced by b o u n d a r y  condi t ions  (see, e.g., 
ref. 1). Thus,  the pa t t e rn  has many  defects and  grain  boundar ies  that  do  
not  d i s appea r  within a reasonable  time. Fu r the rmore ,  in the vicinity of 
threshold ,  o rde red  per iod ic  roll  pa t te rns  with wavenumber  q are subject  to 
the zigzag instability,(1) which l imits the band  of s table solut ions  essential ly 
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to q > qc, where qc is the critical wavenumber of the roll pattern appearing 
at threshold. This leads to the fact that the theoretical analysis of the 
dynamics of defects (2) and experimental results are not in satisfactory 
agreement. (3) For anisotropic fluids the situation is different. The axial 
anisotropy leads to a preferred orientation of the convective rolls and the 
zigzag instability is usually not present. Thus, two-dimensionally extended, 
well-ordered states can be achieved experimentally, which is necessary for 
the investigation of individual defects. 

The most prominent example for a pattern-forming system with axial 
anisotropy is the electrohydrodynamic convection of planarly aligned 
nematic liquid crystals (EHC) (see, e.g., ref. 4). There the intrinsic axial 
anisotropy leads to convection rolls that are orientated normal or oblique 
to a preferred direction given by a prealignment of the molecules at the 
parallel glass plates confining the layer. (5) Due to the degeneracy of the 
angle of the oblique rolls with respect to the preferred axis, zigzag patterns 
may be found experimentally. Universal envelope equations describing the 
patterns in the vicinity of threshold were derived (6) and quantified from the 
hydrodynamic equations. (7-9) In the normal-roll case various theoretical 
results have been probed by experiment and good quantitative agreement 
has been found. (1~ Some of the measured and compared properties are: the 
neutral curve for normal rolls, the coherence lengths and relaxation 
time, (1~ the amplitude of convection, (11) the stability boundaries of the 
band of periodic solutions (Eckhaus instability),/12'13) the evolution of an 
unstable into a stable state and the dynamics and interaction of 
defects. (~0,14,15) 

It should be mentioned that some experimental results cannot be 
explained by the theoretical analysis of the standard electrohydrodynamic 
equations(7'9): the bifurcation to traveling waves (4~ and the very recent 
observation of a weak backward bifurcation to normal rolls. (16) On the 
other hand, the transition to weak turbulence, which is observed in experi- 
ment slightly above threshold, may be explained by mean-flow effects, (81 
which are contained in the established electrohydrodynamic equations. 

2. D Y N A M I C S  A N D  I N T E R A C T I O N  OF D E F E C T S  

We confine ourselves to the region near threshold. Here a universal 
description in terms of complex envelope equations can be used. (6"7) The 
physical solutions and their slow space and time dependence can be written 
in the form 

uj=~I/Z[A(X, Y, T) Ujei(qcx+PcY)+c.c.] wj(z, t) + (_0(~) (1) 
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where e,~ 1 measures the dimensionless distance from threshold, the 
functions wj capture the z, t dependence of the linear modes at threshold, 
A(X,  Y, T) is a complex, slowly-varying function depending on the slow 
space and time variables 

X = e 1/2x, Y = e ii2y, T = ~t (2) 

and c.c. denotes the complex conjugate. 
A perturbation expansion up to order e3/2 leads to a solvability condi- 

tion for the complex envelope A, 

To~rA 2 2 2 2 ~--- [~I~X "~ ~20y + 2~2ac~x0 v + 1 - IA[2] A (3) 

The linear part of this equation describes the neutral surface in parabolic 
approximation. Thus, the parameters ~,, ~2, and a can be calculated from 
the neutral surface and the relaxation time To is obtained from the growth 
rate of the linear solutions. In the case of EHC the parameters were 
calculated for the material MBBA and can be found in refs. 7 and 8. 

Equation (3) describes oblique rolls as well as normal rolls (a = 0), but 
it does not describe zigzag patterns, where oblique rolls with both orienta- 
tions are present. In this case coupled equations similar to Eq. (3) have to 
be used. O) Also in the vicinity of the Lifshitz point, where the oblique and 
normal roll regimes merge, a different envelope equation has to be used. (6"7) 

In this regime the system has some similarity to isotropic systems and the 
envelope equation is in fact a generalization of the well-known Newell- 
Whitehead equation. ~7) 

By rotation and scaling, Eq. (3) can be transformed into the more 
symmetric form 

c3rA = [ 0 2 +  ~2+  1 - IAI2 ]A  (4) 

This equation is identical to the time-dependent Ginzburg-Landau equa- 
tion for superfluid 4He.~18~ It has stationary periodic solutions of the form 

A = (1 - -  Q 2  p2)1/2 ei(Ox+,,y) (5) 

which describe roll patterns above threshold with a waveveetor {9'~5) 

q = [qc + d a ( Q  cos ~/{ + - P sin 7/~ _ ), Pc + d/2(Q sin ~/~ + + P cos c(~ _ )] 

(6) 

where 

~2+/_=1/2{~2+~22+[(~2 ~2)2+4a2~212 2 ,/2} 

tan(2~) 2 2 = 2a~1 ~2/(~1 - ~2) 

822/64/5-6-8 



1010 Bodenschatz et  aL 

Linear stability analysis of the solution (5), (6) shows, that it is stable for 
2 Q 2 + p 2 <  QE = 1/3,(6) which is a direct generalization of the Eckhaus 

stability criterion known from quasi-one-dimensional systems. ~ 
We now consider the decay of an unstable periodic pattern with 

Q 2 + p 2 >  1/3. For simplicity we choose P = 0 .  The general case is 
recovered by a simple rotation. One easily finds that the linear modes that 
destabilize the periodic solutions are given by 

6A = [a+ e i~I~x + Lr~ + a_ e i~,cx+LY)] e~T (7) 

where the growth rate is 

a =  - (1  - Q Z ) - K 2 - L 2 +  [(1-Q2)2q-4QZK2] 1/2 (8) 

The maximal growth rate for Q2 > 1/3 is 

am,x (3QZ-1)2/4Q 2, 2 Q )/ Q ,  = 0  (9) = K m a  x = (3Q 2 -  1)(1 + 2 4 2 Lm,x2 

Expanding a around Kmax and L . . . .  gives 

ff=ffmax[1-c2(g-K ~ 2 -  C2L2-1  ( 1 0 )  max ,' 2 J 

C 2 = ( l + Q g ) / ( 3 Q 2 - 1 ) Q  2, C 2 = 4 0 2 / ( 3 Q 2 - 1 )  2 (11) 

Cx and C 2 define (dimensionless) length scales which characterize the width 
of the modulation-wavevector spectrum (K, L) that can be expected to 
contribute to the initial destabilization process. For normal rolls the 
corresponding physical lengths are ~-x= C1~1 g-1/2 a n d  ~ . =  C2~z ~-1/2. 
Assuming that the size of the system is sufficiently large in the X direction, 
we can now distinguish three regimes for the width Ly in the Y direction: 

(i) L y <  ~y: Modes in the y direction are suppressed. The system 
behaves quasi-one-dimensionally and there the wavelength-changing 
process, which comprises creation or annihilation of roll pairs, has been 
discussed in some detail. (2~ The system makes essentially one phase slip 
per modulation wavelength and ends in a periodic solution with final 
wavenumber near IQsl = [Q[ -  [Kmaxl. 

(ii) L y ~ ~ r: The situation is similar to (i) except that a phase-slip 
process is resolved into the creation of a defect pair, motion in y direction, 
and annihilation at the boundary (or equivalent). Simulations for this case 
have been presented. (21) 

(iii) Ly>> Cy: Then many defect pairs are created in the Y direction 
for every modulation wavelength. The system has now the chance to reach 
the most stable state Q = 0 by creating/annihilating as many rolls as 
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necessary by defect motion and annihilation. One expects a smooth cross- 
over from the case (ii) to (iii). Some detailed simulations are presented in 
ref. 22. 

Note that, since ~y diverges when fQI ~ 1/3 from above, even rather 
wide systems should in principle exhibit a crossover from cases (iii) to (ii) 
and (i) when Q approaches the stability boundary. It appears that the 
experiments by Rasenat et al3 TM were done in cases (i) and (ii), whereas 
those of Lowe and Gollub ~ pertain essentially to case (iii). This could 
explain why in the latter case the system actually ended up near the band 
center after a sufficiently long time. 

In the following we will consider stable periodic states, where 
Q2< Q~: All periodic states, except Q = 0 (band center), are metastable. 
Evolution to the band center can occur by the motion of defects, once they 
have been nucleated by finite fluctuations or perturbations. (is) Mathemati- 
cally a (point) defect is a (simple) zero of the complex amplitude A and can 
be characterized by a crossing of the lines Re(A)=0  and Ira(A)=0.  Near 
the center one has A ~(X+iY)  and therefore A is perfectly analytical. 
There are two types of zeros with opposite polarity. The phase either 
increases or decreases by 2~ when encircling the zero in a clockwise sense. 
One therefore can associate "topological charges" + 1 or - 1  with the 
defects. In the bulk, defects can only be nucleated (by finite fluctuations in 
the stable range) or annihilated in pairs. The homogeneous nucleation of 
defects has been considered in ref. 15. 

By using Eq. (4), the velocity V of isolated defects was calculated 
analytically in the limit Q2~ 1, leading to Vln(3.29/v)=2Q for a suf- 
ficiently large system, (Is) as well as numerically in the whole region 
O<Q<QE .(14,9) The results can be described to high accuracy by the 
formula Vln(3.29/V)--2Q(1- 0.35Q2). The motion of an isolated defect is 
always perpendicular to Q. The force on the defect is similar to a Peach- 
Koehler force on defects in solids. Behind a defect the wavenumber of the 
pattern is changed by 2rolL, where L is the size of the system. Thus, the 
pattern is brought nearer to the band center Q = 0, where the velocity V of 
an isolated defect is zero. A comparison of our results with recent 
experiments shows good quantitative agreementJ m'm 

The interaction and annihilation of defects is also described by Eq. (4). 
The analysis of an isolated, moving dislocation shows that the deformation 
of the roll pattern decays in front exponentially over a distance R = l/V, 
while behind the dislocation the decay is proportional to R l/2 [see, e.g., 
Eq. (2.17) of ref. 15]. Thus, if the background wavenumber Q is nonzero 
and two defects with opposite topological charge are approaching each 
other, the velocity will be constant for R>~ 2/V~2/Q. Subsequently the 



1 01 2 Bodenschatz e t  al. 

motion will accelerate and eventually the attraction will dominate over the 
Peach-Koehler force and lead to annihilation. This can be seen in simula- 
tions. ( 9 )  

In recent experiments by Braun and Steinberg this annihilation 
process was studied in detail for situations near band center (Q ~ 1) where 
a determination of (2 was not possible. (23~ To make a quantitative 
comparison we have conducted further simulations of Eq. (4). In Fig. 1 the 
distance L between two defects of opposite polarity approaching each other 
along a straight line is plotted versus time T for different (2 in scaled units. 
At T =  0 the defects annihilate. The solid lines give the numerical results 
and the squares, circles, and diamonds are experimental results for climb 
motion (see figure caption for details). 

The case (2 = 0, where the Peach-Koehler force vanishes so that V ~ 0 
for L ~ oo, deserves special attention. The analysis in ref. 15 then leads to 
V L  = 2/C,  where C ~  in(L/2.26) for L~> 1 and V L  ~ 1. Computationally, it 
is very difficult to verify the logarithmic dependance of C on L because of 
finite-size effects which influence the results strongly when L ~> 1. For small 
distances, shortly before annihilation, the gradient terms in the Ginzburg- 
Landau equation presumably become dominant and one m ay  argue that 
the dynamics is governed by a self-similar solution of the diffusion equation 
so that L ~  T~/2, (24~ which appears consistent with the numerical results. 
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Fig. 1. The distance L between two defects of opposite polarity that approach each other on 
a straight line is plotted for different background wavenumbers Q versus time T (reduced 
units). For comparison the experimental results of Braun and Steinberg are included. The 
different symbols denote different distances e from the threshold (circles: e=0.02; squares: 

= 0.04; diamonds: e = 0.005) (see Fig. 1 of ref. 23). The point T =  0 marks the annihilation of 
the defects. 
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Fig. 2. The maximum of IAI along the connection line of the defect centers is plotted versus 
the distance L of the defects. For distances smaller than about L= 8, JAm starts to decrease 
significantly, marking the onset of overlap of the defect cores. 

Allowing for a small wavevector displacement Q, one finds V(L + 1/Q)= 
2/C, where C is the same as above if VL> 1. One now can also have 
the opposite limit VL~ 1 and then, for a sufficiently large system, 
C=ln(3.29/V). Note that when interaction and Peach-Koehler  force 
oppose each other one has (unstable) equilibrium at L = 1/Q. (15) 

In Fig. 1 the agreement with experiments seems to be reasonable if one 
allows for values of Q up to 0.2. The authors of ref. 23 argue that there is 
a break in the velocity curves around L, ~ 7-8 signaling the existence of a 
second length scale. We wish to point out that our simulations for Q ~ 1 
exhibit such kind of a crossover which can be explained by the fact that 
around Ls the overlap of the dislocation cores becomes significant, leading 
to substantial distortion of IAI. This is seen from Fig. 2, where we plot the 
maximum of I AJ along the line connecting the defect centers. I AI starts to 
decrease strongly around L,. 

When two dislocations approach each other in a situation where the 
Peach-Koehler  force is not along the line which connects the defects, the 
defects can encircle each other up to 180 deg before annihilation. This effect 
has also been observed in experiments. (25) 

3. C O N C L U D I N G  R E M A R K S  

We have given an overview of the investigation of defects in patterns 
of anisotropic fluids. It is shown that the motion, interaction, and annihila- 
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t i on  of defects nea r  th resho ld  can  be descr ibed even quan t i t a t i ve ly  wi th in  

the f r amework  of the G i n z b u r g - L a n d a u  equa t ion .  N o n a d i a b a t i c  effects 
which  couple  the glide of a defect to the u n d e r l y i n g  roll  pa t t e rn  are 

n o t  inc luded.  As long  as the expe r imen t  is c o n d u c t e d  no t  too  nea r  to 
the t r a n s i t i o n  to weak  tu rbu lence ,  mean - f low  effects seem n o t  to p lay  a 

s ignif icant  roll  for the d y n a m i c s  of defects. O the rwise  a modi f ied  vers ion  of 
enve lope  e q u a t i o n s  has  to be  used. (8) 
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